Hamiltonian Spider Intersection Graphs Are Cycle Extendable

نویسندگان

  • Atif A. Abueida
  • Arthur H. Busch
  • R. Sritharan
چکیده

A cycle C of length k is extendable if there is a cycle C′ of length k+1 with V (C) ⊂ V (C′). A graph G = (V,E) of order n is cycle extendable when every cycle C of length k < n is extendable. A chordal graph is a spider intersection graph if it admits an intersection representation which consists of subtrees of a sub-divided star (or spider). In 1990, Hendry conjectured that all hamiltonian chordal graphs are cycle extendible, and this conjecture remains unresolved. We show that all hamiltonian spider intersection graphs are cycle extendable, generalizing known results on cycle extendability in interval graphs and split graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tough spiders

Spider graphs are the intersection graphs of subtrees of subdivisions of stars. Thus, spider graphs are chordal graphs that form a common superclass of interval and split graphs. Motivated by previous results on the existence of Hamilton cycles in interval, split and chordal graphs, we show that every 3/2-tough spider graph is hamiltonian. The obtained bound is best possible since there are (3/...

متن کامل

On cycles in intersection graphs of rings

‎Let $R$ be a commutative ring with non-zero identity. ‎We describe all $C_3$‎- ‎and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. ‎Also, ‎we shall describe all complete, ‎regular and $n$-claw-free intersection graphs. ‎Finally, ‎we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...

متن کامل

Characterizing forbidden pairs for hamiltonian properties 1

In this paper we characterize those pairs of forbidden subgraphs sufficient to imply various hamiltonian type properties in graphs. In particular, we find all forbidden pairs sufficient, along with a minor connectivity condition, to imply a graph is traceable, hamiltonian, pancyclic, panconnected or cycle extendable. We also consider the case of hamiltonian-connected graphs and present a result...

متن کامل

Geometric-Arithmetic Index of Hamiltonian Fullerenes

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.

متن کامل

Hamiltonian properties of triangular grid graphs

A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. In 2000, Reay and Zamfirescu showed that all 2-connected, linearly convex triangular grid graphs (with the exception of one of them) are hamiltonian. The only exception is a graph D which is the linearlyconvex hull of the Star of David. We extend this result to a wider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2013